
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP/2013-149
2014/02/27

CMS-SMP-12-002

Measurement of associated W + charm production in pp
collisions at

√
s = 7 TeV

The CMS Collaboration∗

Abstract

Measurements are presented of the associated production of a W boson and a charm-
quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analy-
sis is conducted with a data sample corresponding to a total integrated luminos-
ity of 5 fb−1, collected by the CMS detector at the LHC. W boson candidates are
identified by their decay into a charged lepton (muon or electron) and a neutrino.
The W + c measurements are performed for charm-quark jets in the kinematic re-
gion pjet

T > 25 GeV, |ηjet| < 2.5, for two different thresholds for the transverse mo-
mentum of the lepton from the W-boson decay, and in the pseudorapidity range
|η`| < 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are
used to measure the following total cross sections: σ(pp → W + c + X) × B(W →
`ν) = 107.7 ± 3.3 (stat.) ± 6.9 (syst.) pb (p`T > 25 GeV) and σ(pp → W + c + X) ×
B(W → `ν) = 84.1 ± 2.0 (stat.) ± 4.9 (syst.) pb (p`T > 35 GeV), and the cross sec-
tion ratios σ(pp → W+ + c + X)/σ(pp → W− + c + X) = 0.954 ± 0.025 (stat.) ±
0.004 (syst.) (p`T > 25 GeV) and σ(pp → W+ + c + X)/σ(pp → W− + c + X) =
0.938 ± 0.019 (stat.) ± 0.006 (syst.) (p`T > 35 GeV). Cross sections and cross section
ratios are also measured differentially with respect to the absolute value of the pseu-
dorapidity of the lepton from the W-boson decay. These are the first measurements
from the LHC directly sensitive to the strange quark and antiquark content of the
proton. Results are compared with theoretical predictions and are consistent with the
predictions based on global fits of parton distribution functions.
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1 Introduction
The study of associated production of a W boson and a charm (c) quark at hadron colliders
(hereafter referred to as W + c production) provides direct access to the strange-quark content
of the proton at an energy scale of the order of the W-boson mass (Q2∼(100 GeV)2) [1–3]. This
sensitivity is due to the dominance of sg→W−+ c and sg→W++ c contributions at the hard-
scattering level (Fig. 1). Recent work [4] indicates that precise measurements of this process
at the Large Hadron Collider (LHC) may significantly reduce the uncertainties in the strange
quark and antiquark parton distribution functions (PDFs) and help resolve existing ambiguities
and limitations of low-energy neutrino deep-inelastic scattering (DIS) data [5]. More precise
knowledge of the PDFs is essential for many present and future precision analyses, such as
the measurement of the W-boson mass [6]. An asymmetry between the strange quark and
antiquark PDFs has also been proposed as an explanation of the NuTeV anomaly [5], making
it crucial to measure observables related to this asymmetry with high precision.

W+ c production receives contributions at a few percent level from the processes dg→W−+ c
and dg → W+ + c, which are Cabibbo suppressed [7]. Overall, the W− + c yield is expected
to be slightly larger than the W+ + c yield at the LHC because of the participation of down
valence quarks in the initial state. A key property of the qg → W + c reaction is the presence
of a charm quark and a W boson with opposite-sign charges.
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Figure 1: Main diagrams at the hard-scattering level for associated W + c production at the
LHC.

The pp → W + c + X process is a sizable background for signals involving bottom or top
quarks and missing transverse energy in the final state. Particularly relevant cases are top-
quark studies and third-generation squark searches. Measurements of the pp → W + c + X
cross section and of the cross section ratio σ(pp→W + c-jet + X)/σ(pp→W + jets + X) have
been performed with a relative precision of about 20–30% at the Tevatron [8–10] hadron collider
using semileptonic charm hadron decays.

We present a detailed study of the pp→ W + c + X process with the Compact Muon Solenoid
(CMS) detector, using a data sample corresponding to a total integrated luminosity of 5 fb−1

collected in 2011 at a center-of-mass energy of 7 TeV. We measure the total cross section and
the cross section ratio R±c = σ(W+ + c)/σ(W− + c) using the muon and electron decay chan-
nels of the W boson. Charm-quark jets are identified within the fiducial region of transverse
momentum pjet

T > 25 GeV and pseudorapidity |ηjet| < 2.5 using exclusive hadronic, inclusive
hadronic, and semileptonic decays of charm hadrons. Furthermore, the cross section and the
R±c ratio are measured as a function of the pseudorapidity of the lepton from the W decay, thus
probing a wide range in the Bjorken x variable, which at leading order can be interpreted as
the momentum fraction of the proton carried by the interacting parton.

This paper is organized as follows: the CMS detector is briefly described in Section 2 and the
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general analysis strategy is outlined in Section 3. The samples used to carry out the measure-
ment and the event selection criteria are presented in Sections 4 and 5. Section 6 details the
measurement of the total cross section and Sections 7 and 8 are devoted to studies of the differ-
ential cross section and the charge ratio. Results and comparisons with theoretical predictions
are discussed in Section 9. Finally, we summarize the results of this paper in Section 10.

2 CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal di-
ameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and
strip tracker, an electromagnetic calorimeter (ECAL), and a brass/scintillator hadron calorime-
ter (HCAL). Muons are detected in gas-ionization detectors embedded in the steel flux return
yoke of the magnet.

The CMS experiment uses a right-handed coordinate system with the origin at the nominal
interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up
(perpendicular to the LHC plane), and the z axis along the anticlockwise-beam direction. The
polar angle θ is measured from the positive z axis and the azimuthal angle φ is measured in the
x-y plane. The pseudorapidity is given by η = − ln(tan(θ/2)).

The tracker measures charged-particle trajectories in the pseudorapidity range |η| ≤ 2.5. It
consists of 1440 silicon pixel and 15 148 silicon strip detector modules. It provides an impact
parameter resolution of 15 µm and a transverse momentum (pT) resolution of about 1% for
charged particles with pT around 40 GeV. The ECAL consists of nearly 76 000 lead tungstate
crystals, which provide coverage in pseudorapidity |η| ≤ 1.479 in a cylindrical barrel region
and 1.479 ≤ |η| ≤ 3.0 in two endcap regions (EE). A preshower detector, consisting of two
planes of silicon sensors interleaved with a total of three radiation lengths of lead, is located in
front of the EE. The ECAL has an ultimate energy resolution of better than 0.5% for unconverted
photons with transverse energies (ET) above 100 GeV. The energy resolution is 3% or better for
the range of electron energies relevant for this analysis. The HCAL is a sampling device with
brass as passive material and scintillator as active material. The combined calorimeter cells are
grouped in projective towers of granularity ∆η × ∆φ = 0.087× 0.087 at central rapidities and
0.175× 0.175 at forward rapidities. Muons are detected in the pseudorapidity range |η| ≤ 2.4,
with detection planes based on three technologies: drift tubes, cathode strip chambers, and
resistive-plate chambers. A high-pT muon originating from the interaction point produces track
segments in typically three or four muon stations. Matching these segments to tracks measured
in the inner tracker results in a pT resolution between 1% and 2% for pT values up to 100 GeV.
The first level of the CMS trigger system, composed of custom hardware processors, is designed
to select the most interesting events in less than 1 µs using information from the calorimeters
and muon detectors. The high-level trigger processor farm further decreases the event rate to
a few hundred hertz before data storage. A more detailed description of CMS can be found
elsewhere [11].

3 Analysis strategy
We study W + c associated production in final states containing a W → `ν decay (where ` =
µ or e) and a leading jet with charm-quark content. Jets originating from a c (c) parton are
identified using one of the three following signatures: a displaced secondary vertex with three
tracks and an invariant mass consistent with a D+ → K−π+π+ (D− → K+π−π−) decay; a
displaced secondary vertex with two tracks consistent with a D0 → K−π+ (D̄0 → K+π−)
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decay and associated with a previous D∗+(2010) → D0π+ (D∗−(2010) → D̄0π−) decay at the
primary vertex; or a semileptonic decay leading to a well-identified muon. In total, since both
electron and muon channels are considered in the W-boson decay, six different final states are
explored.

The D±, D∗±(2010), and c→ `ν + X decays provide a direct measurement of the charm-quark
jet charge, which is a powerful tool to disentangle the W + c signal component from most of
the background processes. We define two types of distributions: opposite-sign distributions,
denoted by OS, are built on samples containing a W boson and a charm-quark jet with an
opposite-charge sign; same-sign distributions, denoted by SS, are built from samples where
the W boson and the charm-quark jet have the same charge sign. The final distributions used
in the analysis are obtained by subtracting the SS distribution from the OS distribution (re-
ferred to as OS − SS) for any given variable. This subtraction has no effect on the signal at
leading order. In contrast, W + cc and W + bb events provide the same OS and SS contribu-
tions and are suppressed in OS− SS distributions. Moreover, any OS− SS asymmetry present
in tt, single-top-quark, or W + light-quark jet backgrounds is found to be negligible according
to simulations. As a consequence, OS− SS distributions are largely dominated by the W + c
component, allowing for many detailed studies of the pp→W + c + X process.

Using displaced secondary vertices is a simple way to suppress backgrounds, such as Drell–
Yan events, W + light-quark jet, and multijet final states with no heavy-flavour content. It also
reduces backgrounds containing b-hadron decays, which often lead to secondary vertices with
a higher track multiplicity than a typical D-meson decay.

The sample containing semileptonic charm decays is complementary; it is a larger data sample
but is more affected by backgrounds, in particular Drell–Yan events. Exclusive identification
of D± and D∗±(2010) final states allows for a precise accounting of systematic uncertainties
in charm branching fractions and acceptances for cross section measurements. However, only
charge identification is strictly required for studies that are independent of the overall W +
c normalization, such as relative differential measurements or measurements of the σ(W+ +
c)/σ(W− + c) ratio.

In order to improve the statistical precision, we also employ inclusive selections of charm
hadron decays, i.e. without requiring the identification of the full final state, thus allowing
for decays with one or more neutral particles. Inclusive samples of events with three-track
and two-track secondary vertices are selected by loosening the invariant mass constraints.
Even with these relaxed criteria, simulations predict that the background contributions to the
OS− SS subtracted distributions in these inclusive samples are small compared with the signal
yield.

4 Data and Monte Carlo samples and signal definition
The analysis reported in this paper was performed with a data sample of proton-proton col-
lisions at

√
s = 7 TeV collected with the CMS detector in 2011. A detailed data certification

process [12] guarantees that the data set available for analysis, corresponding to an integrated
luminosity L = 5.0 ± 0.1 fb−1, fulfills the quality requirements for all detectors used in this
analysis. Candidate events for the muon decay channel of the W boson are selected online by
a single-muon trigger that requires a reconstructed muon with pT > 24 GeV. Candidate events
for the electron channel are selected by a variety of electron triggers. Trigger conditions were
tightened throughout the 2011 data run to cope with the increasing instantaneous luminosity
of the LHC collider. Most of the data used in this analysis are selected by requiring an electron
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candidate with transverse energy ET > 32 GeV.

Muon and electron candidates are reconstructed following standard CMS algorithms [13, 14].
Jets, missing transverse energy, and related quantities are computed using particle-flow tech-
niques [15] in which a full reconstruction of the event is developed from the individual particle
signals in the different subdetectors. Jets are reconstructed from the particle-flow candidates
using an anti-kT clustering algorithm [16] with a distance parameter of 0.5. Charged parti-
cles with tracks not originating at the primary vertex are not considered for the jet clustering,
and the extra energy clustered in jets from the presence of additional pp interactions (pileup
events) is subtracted from the jet energy [17, 18]. Finally, energy corrections derived from data
and simulated samples are applied to correct for η and pT dependent detector effects [19].

Large samples of events simulated with Monte Carlo (MC) techniques are used to evaluate
signal and background efficiencies. The W-boson signal (W → µν and W → eν) as well as
other electroweak processes (such as Z → µµ, Z → ee, W → τν, and Z → ττ production)
are generated with the MADGRAPH [20] (v5.1.1) event generator, interfaced to the PYTHIA [21]
(v6.4.24) program for parton shower simulation. The MADGRAPH generator produces parton-
level events with a vector boson and up to four partons in the final state on the basis of matrix
element calculations. It has been shown to reproduce successfully the observed jet multiplicity
and kinematic properties of W + jets final states at the LHC energy regime [22]. The match-
ing matrix element/parton shower scale m2 is equal to (10 GeV)2 and the factorization and
renormalization scales are set to Q2 = M2

W/Z + p2
T,W/Z. Constraints on the phase space at the

generator level are not imposed, except for the condition M`` > 10 GeV in the case of Z(γ∗)
production.

Potential backgrounds in this analysis come from tt and single-top-quark production. A sample
of tt events is generated with the MADGRAPH generator interfaced to PYTHIA. Single-top-
quark events are generated in the t-channel, s-channel, and tW associated modes with the next-
to-leading-order (NLO) generator POWHEG [23] (v1.0), interfaced with PYTHIA. The PDF set
used in these POWHEG productions is CT10 [24]. We also consider the small contributions from
diboson (WW, WZ, ZZ) events and quantum chromodynamics (QCD) multijet events using
PYTHIA. All leading-order (LO) generations use the CTEQ6L1 PDF set [25] with parameters set
for the underlying event according to the Z2 tune [26].

Cross sections for single W and Z production processes are normalized to the predictions from
FEWZ [27] evaluated at next-to-next-to-leading order (NNLO) using the MSTW08NNLO [28]
PDF set. The tt cross section is taken at NNLO from Ref. [29]. For the rest of the processes,
cross sections are normalized to the NLO cross section predictions from MCFM [30] using the
MSTW08NLO PDF set. The QCD multijet cross section is evaluated at LO.

Several minimum-bias interactions, as expected from the projected running conditions of the
accelerator, are superimposed on the hard scattering to simulate the real experimental condi-
tions of multiple pp collisions occurring simultaneously. To reach an optimal agreement with
the experimental data, the simulated distributions are reweighted according to the actual num-
ber of interactions (an average of nine) occurring given the instantaneous luminosity for each
bunch crossing. Generated events are processed through the full GEANT4 [31] detector simu-
lation, trigger emulation, and event reconstruction chain of the CMS experiment. Predictions
derived from the MC-simulated samples are normalized to the integrated luminosity of the
data sample.

At the hard-scattering level we identify W+ c signal events as those containing an odd number
of charm partons in the final state. This choice provides a simple operational definition of the
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process and ensures that pure QCD splittings of the g → cc type are associated with the back-
ground. Events containing b quarks in the final state are always classified as W+ b+X in order
to correctly identify b→ c decays. The W + c signal reference is defined at the hard-scattering
level of MADGRAPH, which provides an implicit parton-jet matching for a jet separation pa-

rameter of R =
√
(∆η)2 + (∆φ)2 = 1 that is suitable for comparisons with the NLO theoretical

predictions of MCFM at the .1% level. The phase space definition at the generator level is
chosen in order to approximately match the experimental selections used in the analysis. For
charm partons we require pc

T > 25 GeV, |ηc| < 2.5. Differential measurements are performed as
a function of the absolute value of the lepton pseudorapidity |η`|, whereas total cross sections
and average ratios require |η`| < 2.1. Potential dependencies on the center-of-mass energy of
the hard scattering process are explored by considering two different transverse momentum
thresholds for the charged leptons from the W-boson decay: p`T > 25 GeV and p`T > 35 GeV.
The p`T > 25 GeV case is analyzed in the W→ µν channel only.

5 Event selection
The selection of W-boson candidates closely follows the criteria used in the analysis of inclu-
sive W → µν and W → eν production [32]. The leptonic decay of a W boson into a muon or
an electron, and a neutrino is characterized by the presence of a high-transverse momentum,
isolated lepton. The neutrino escapes detection causing an apparent imbalance in the trans-
verse energy of the event. Experimentally, the magnitude of the vector momentum imbalance
in the plane perpendicular to the beam direction defines the missing transverse energy of an
event, Emiss

T . In W-boson events, this variable is an estimator of the transverse energy of the
undetected neutrino.

Muon tracks are required to have a transverse momentum pµ
T > 25 GeV and to be measured

in the pseudorapidity range |ηµ| < 2.1. A muon isolation variable, Iµ
rel, is defined as the sum

of the transverse energies of neutral particles and momenta of charged particles (except for the

muon itself) in a ∆R =
√
(∆η)2 + (∆φ)2 = 0.4 cone around the direction of the muon, and

normalized to the muon transverse momentum. The muon is required to be isolated from any
other detector activity according to the criterion Iµ

rel < 0.12.

Electron candidates with pe
T > 35 GeV are accepted in the pseudorapidity range |ηe| < 2.1 with

the exception of the region 1.44 < |ηe| < 1.57 where service infrastructure for the detector
is located, thus degrading the performance. The electron isolation variable, Ie

rel, is defined
as the sum of the transverse components of ECAL and HCAL energy deposits (excluding the
footprint of the electron candidate) and transverse momenta of tracks reconstructed in the inner
tracker in a ∆R = 0.3 cone around the electron direction, and normalized to the electron pT. An
isolated electron must satisfy Ie

rel < 0.05.

The background arising from Drell–Yan processes is reduced by removing events containing
additional muons (electrons) with p`T > 25 (20)GeV in the pseudorapidity region |ηµ| < 2.4
(|ηe| < 2.5). Finally, the reconstructed transverse mass, MT, which is built from the transverse
momentum of the isolated lepton, p`T, and the missing transverse energy in the event, MT ≡√

2 p`T Emiss
T [1− cos(φ` − φEmiss

T
)], where φ` and φEmiss

T
are the azimuthal angles of the lepton

and the Emiss
T vector, must be large. In the muon channel, MT must be greater than 40 GeV. A

higher threshold is set in the electron channel, MT > 55 GeV, since a condition on this variable
(MT > 50 GeV) is already included in the online trigger selection. This requirement reduces the
QCD multijet background to a negligible level in the muon channel. Residual QCD background
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in the electron channel is estimated from the experimental Emiss
T distribution. It is found to be

negligible after subtraction of the SS component.

A W + jets sample is selected by demanding the presence of at least one jet with pjet
T > 25 GeV

in the pseudorapidity range |ηjet| < 2.5, thus ensuring that the jet passes through the tracker
volume, and hence achieving the best possible jet pT resolution. A W + c candidate sample is
further selected by searching for a distinct signature of a charmed particle decay among the
constituents of the leading jet associated with the W boson, as introduced in Section 3. For
that purpose, events with a secondary vertex consistent with the decay of a relatively long-
lived quark are kept. Secondary vertices are reconstructed using an adaptive vertex finder [33]
algorithm with well understood performance [34]. This algorithm is stable with respect to
alignment uncertainties and is an essential component of the vertex-based b-tagging algorithms
used in the CMS experiment. In its default implementation, used in this analysis, tracks within
a ∆R = 0.3 cone around the jet axis, that have a transverse momentum larger than 1 GeV and
a probability of originating from the primary vertex below 50% are considered to come from a
secondary vertex. Finally, only secondary vertices with a transverse decay length significance
with respect to the primary vertex position larger than 3 are kept.

A search for D± and D0 charm meson decays is carried out in those events having reconstructed
secondary vertices with three or two tracks, respectively. In addition, a W+ c candidate sample
with the charm quark decaying semileptonically is selected from the events with an identified
muon among the particles constituting the jet. These samples are described in more detail in
the following subsections.

5.1 Selection of exclusive D± decays

We identify D± → K∓π±π± decays in the selected W + jets sample using secondary ver-
tices with three tracks and a reconstructed invariant mass within 50 MeV of the D± mass,
1869.5 ± 0.4 MeV [35]. The kaon mass is assigned to the track that has opposite sign to the
total charge of the three-prong vertex and the remaining tracks are assumed to have the mass
of a charged pion. This assignment is correct in more than 99% of the cases, since the fraction of
double Cabibbo-suppressed decays is very small: B(D+ → K+π+π−)/B(D+ → K−π+π+) =
0.00577± 0.00022 [35].

Figure 2 shows the OS− SS distributions of the reconstructed invariant mass for D± candidates
associated with W → µν and W → eν decays. It is compared with the predictions obtained
from the simulated MC samples. We distinguish two different contributions in the W + c pre-
diction. A resonant W + c component is composed of those events with a D± meson decaying
into the K∓π±π± final state at generator level; it is visible as a clear peak around the D± mass
in Fig. 2. A nonresonant component arises from W+ c events where the charm meson decays to
any final state other than K∓π±π±. The reconstructed invariant mass distribution in this case
extends as a continuum over the whole spectrum. The distribution presented in Fig. 2 is al-
most exclusively populated by W + c events. The contribution from the non-(W + c) processes
introduced in Section 4 is shown as part of the background.

The MC prediction for the D± signal is scaled by the ratio of the branching fractions B(c →
D± → K∓π±π±) used in the simulation and measured experimentally. The branching fraction
used in the PYTHIA simulation, (1.528± 0.008)%, is about 25% smaller than the experimental
measurement, (2.08± 0.10)%. This value is the combination of three measurements performed
at LEP [36–38] of this branching fraction times the relative partial decay width of the Z boson
into charm-quark pairs, Rc = Γ(Z→ cc)/Γ(Z→ hadrons). The original LEP measurements
are divided by the latest experimental value from the PDG [35] of Rc = 0.1721± 0.0030. In the
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Figure 2: The invariant mass distribution of three-prong secondary vertices in data, after sub-
traction of the SS component. The position and width of the resonance peak are in reasonable
agreement with the MC expectations (only statistical uncertainties are quoted). The channels
shown correspond to muon and electron decay channels of the W boson with pµ

T > 25 GeV
(left) and pe

T > 35 GeV (right). The different contributions shown in the plot are described in
the text. Note that the amount of non-(W+ c) background predicted by the simulation is almost
negligible.

combination of these three experiments, we have assumed that experimental systematic un-
certainties are uncorrelated among the measurements, given the substantially different sources
of uncertainty considered by each experiment, whereas the experimental uncertainty in Rc is
propagated in a correlated way. Agreement between data and predictions is reasonable, al-
though a small signal excess over the predictions (of about 10%) is visible in Fig. 2.

For illustration purposes, the sum of a Gaussian function to describe the signal plus a second-
degree polynomial for the nonresonant background is fitted to the data distribution. The PDG
value of the D± mass is reproduced precisely in all cases.

5.2 Selection of exclusive D∗±(2010) decays

The first step in the identification of D∗+(2010) → D0π+ (D∗−(2010) → D̄0π−) decays is the
selection of a secondary vertex with two tracks of opposite charge, as expected from a D0 →
K−π+ (D̄0 → K+π−) decay. This two-track system is combined with a primary track having
pT > 0.3 GeV found in a cone of ∆R = 0.1 around the direction of the D0 candidate momentum.
The secondary track with charge opposite to the charge of the primary track is assumed to be
the kaon in the D0 decay. Only combinations with a reconstructed mass differing from the D0

mass (1864.86± 0.13 MeV [35]) by less than 70 MeV are kept. The D∗±(2010) signal is identified
as a peak in the distribution of the difference between the reconstructed D∗±(2010) and D0

masses near the expected value, mrec(D∗±(2010))−mrec(D0) = 145.421± 0.010 MeV [35].

The OS− SS distribution of the reconstructed mass difference mrec(D∗±(2010)) − mrec(D0) is
shown in Fig. 3. Both W → µν and W → eν decays are considered, with transverse mo-
mentum requirements of pµ

T > 25 GeV and pe
T > 35 GeV. The resonant W + c component is



8 5 Event selection

composed here of those events with a D∗±(2010) meson decaying into the D0π+; D0 → K−π+

(D̄0π−; D̄0 → K+π−) final state at generator level; it is visible as a clear peak around the nom-
inal mass difference mrec(D∗±(2010))−mrec(D0) in Fig. 3. The nonresonant component comes
from W + c events where the charm meson decays to any final state other than D0π+; D0 →
K−π+ (D̄0π−; D̄0 → K+π−). Note that the amount of background predicted by the simulation,
and also observed in data, is extremely small.
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Figure 3: Distribution of the reconstructed mass difference between D∗±(2010) and D0 candi-
dates in the selected W + c sample, after subtraction of the SS component. The position and
width of the peak near 145 MeV are in agreement with the MC expectations. The different con-
tributions shown in the plot are described in the text. The channels shown correspond to muon
and electron decay channels of the W boson with pµ

T > 25 GeV (left) and pe
T > 35 GeV (right).

The MC prediction for the full D∗±(2010) decay chain is scaled by the ratio between the product
of the branching fraction for the decay chain B(c → D∗+(2010))× B(D∗+(2010) → D0π+)×
B(D0 → K−π+) used in the simulation and the experimental measurement. The product
of the branching fractions used in the PYTHIA simulation is (0.743± 0.005)%, which is about
20% larger than our estimation of the experimental value, (0.622± 0.020)%. The latter num-
ber is a weighted average that uses as inputs the dedicated measurements of this product
times Rc by ALEPH [37] and OPAL [39], as well as the measurement of B(c → D∗+(2010))×
B(D∗+(2010) → D0π+) by DELPHI [40]. To obtain the charm fractions needed for the W + c
cross section normalization, the ALEPH [37] and OPAL [39] measurements are divided by the
world-average Rc experimental value and the DELPHI [40] measurement is multiplied by the
world-average B(D0 → K−π+) = 0.0388± 0.0005, both taken from the PDG [35]. Also in this
case, experimental systematic uncertainties are assumed to be uncorrelated among the three
LEP measurements and the experimental uncertainty in Rc is propagated in a correlated way.
A small excess of data over the theoretical predictions is also observed in this channel.

5.3 Selection of semileptonic charm decays

In addition to the previous exclusive channels, we consider the identification of charm-quark
jets via semileptonic decays of the c quark. Only jets containing semileptonic decays into
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muons are considered. Muons in jets are identified with the same criteria used for muon identi-
fication in W-boson decays, with the exception that the isolation requirements are not applied.
Since the OS− SS strategy effectively suppresses all backgrounds except Drell–Yan processes,
additional requirements are applied in order to reduce the Drell–Yan contamination to man-
ageable levels without affecting the signal in an appreciable way. We require pµ

T < 25 GeV,
pµ

T/pjet
T < 0.6, and prel

T < 2.5 GeV, where pµ
T denotes here the transverse momentum of the

muon identified inside the jet and prel
T is its transverse momentum with respect to the jet direc-

tion. We also require the invariant mass of the dilepton system to be above 12 GeV, in order to
avoid the region of low-mass resonances. Finally, dimuon events with an invariant mass above
85 GeV are rejected. The latter requirement is not applied to the sample with W-boson decays
into electrons, which is minimally affected by high-mass dilepton contamination.

For the input semileptonic branching fraction of charm-quark jets, we employ the value B(c→
`) = 0.091± 0.005, which is the average of the inclusive value, 0.096± 0.004 [35], and of the
exclusive sum of the individual contributions from all weakly decaying charm hadrons, 0.086±
0.004 [35, 41]. The uncertainty is increased in order to cover both central values within one
standard deviation. This value is consistent with the PYTHIA value present in our simulations
(9.3%).

Figure 4 shows the resulting transverse momentum distribution of the selected muons inside
the leading jet after the OS− SS subtraction procedure. Again, both W → µν and W → eν
decays are considered, with transverse momentum requirements of pµ

T > 25 GeV and pe
T >

35 GeV for the leptons from the W-boson decay. The background predicted by the simulation
is rather small in the electron channel, but has a substantial Drell–Yan component in the muon
channel. The visible excess of data over the predictions is consistent with the observations in
the D± and D∗±(2010) channels.
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Figure 4: Distributions of the transverse momentum of the muon inside the leading jet of the
event, after subtraction of the SS component. The channels shown correspond to muon and
electron decay channels of the W boson with pµ

T > 25 GeV (left) and pe
T > 35 GeV (right).
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5.4 Selection of inclusive D± and D∗±(2010) decays

Enlarged samples of W + c candidates are selected from the events with secondary vertices
with three or two tracks, in order to increase the size of the samples available for the differential
measurements. We refer to them as inclusive three-prong and two-prong samples, respectively.

Candidates for charm meson decays in the D± → K∓π±π± decay mode are selected among
the events with a secondary vertex with three tracks and with a vertex charge equal to ±1,
which is computed as the sum of the charges associated with the tracks constituting the vertex.
The mass assignment for the secondary tracks follows the procedure described in Section 5.1.
However, the constraint that the invariant mass of the secondary vertex be compatible with
the D± nominal mass within 50 MeV is not required in this case. The OS− SS distribution of
the reconstructed invariant mass in events with three prongs is presented in Fig. 5. In addition
to the resonant peak at the D± mass, there is a nonresonant spectrum with lower values of
the invariant mass corresponding mainly to D± decays with one or more unaccounted neutral
particles in the final state. For the differential cross section measurement, we consider the
region of the invariant mass spectrum m(K∓π±π±) < 2.5 GeV. This results in a sample five
times larger than the D± exclusive sample.
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Figure 5: Inclusive three-prong samples: Invariant mass distribution of the three tracks com-
posing a secondary vertex assuming a D± → K∓π±π± hypothesis. The left plot is for W→ µν
events, with pµ

T > 25 GeV. The right plot is for W→ eν events, with pe
T > 35 GeV. Distributions

are presented after subtraction of the SS component.

Similarly, candidates for D0 charm meson decays are reconstructed in the W + jets events with
a displaced secondary vertex built from two tracks of opposite curvature. The two tracks are
assumed to correspond to the decay products of a D0. The decay chain D∗±(2010) → D0π±,
D0 → K∓π± is identified according to the procedure described in Section 5.2, but dropping the
D0 mass constraint |m(K∓π±)− 1864.86 MeV| < 70 MeV. Figure 6 shows the OS− SS distri-
butions of the mass difference m(K∓π±π±)−m(K∓π±), where one of the pions is the closest
track from the primary pp interaction vertex. The peak at m(K∓π±π±)−m(K∓π±)∼145 MeV
corresponds to the nominal D∗±(2010) − D0 mass difference [35]. W + c events are still the
dominant contribution at larger values of the mass difference. The remaining background is
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small and it is mainly due to residual W+ light-quark jets, W+ cc, and tt production. We select
the events with an invariant mass difference m(K∓π±π±)−m(K∓π±) < 0.7 GeV. The size of
the sample is increased by a factor of ∼25 with respect to the exclusive D∗±(2010) sample.
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Figure 6: Inclusive two-prong samples: Distribution of the difference between the invariant
mass of the two-track system and the closest track from the primary pp interaction vertex and
the invariant mass of the two secondary vertex tracks (m(K∓π±π±) − m(K∓π±)), assuming
the decay chain D∗±(2010) → D0π± → K∓π±π±. The sharp peak at 145 MeV reflects the
nominal mass difference between the invariant mass of the D0 and the primary-pion system
and the D0 mass for the decay D∗±(2010) → D0π±. The left plot is for W → µν events, with
pµ

T > 25 GeV. The right plot is for W → eν events, with pe
T > 35 GeV. The distributions are

presented after subtraction of the SS component.

6 Measurement of the W + c cross section
The measurement of the W + c cross section is performed with several different final states
containing a well-identified W → `ν decay plus a leading jet with charm content. We use the
exclusive D± and D∗±(2010) samples and the semileptonic sample, described in Section 5. Two
sets of measurements are provided: one with p`T > 25 GeV using only W → µν decays; and a
second one, using both W→ µν and W→ eν decays with p`T > 35 GeV.

For all channels under study, the W + c cross section is determined in the fiducial region p`T >

25 (35)GeV, |η`| < 2.1, pjet
T > 25 GeV, |ηjet| < 2.5 using the following expression:

σ(W + c) =
Nsel − Nbkg

Lint B C
,

where Nsel is the number of OS− SS events selected in the defined signal region, Nbkg is the
estimated number of background events after OS− SS subtraction, Lint is the integrated lumi-
nosity, and B is the relevant charm branching fraction, derived in Section 5, for the channel
under study, i.e. B ≡ B(c → D+; D+ → K−π+π+) = (2.08± 0.10)% in the case of the D±

channel, B ≡ B(c→ D∗+(2010); D∗+(2010)→ D0π+; D0 → K−π+) = (0.622± 0.020)% for the
D∗±(2010) channel, and B ≡ B(c→ `) = (9.11± 0.49)% for the semileptonic channel.
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The factor C accounts for limited acceptances and efficiencies. In W + c events, less than 20%
of the events have a well-identified secondary vertex, while less than 50% of the muons from
semileptonic charm decays have sufficiently high energy to be reconstructed and identified in
the muon spectrometer. The simulated W+ jets sample generated by MADGRAPH + PYTHIA is
used to calculate the fraction of events within the fiducial region that fulfil the criteria for the
several charm-quark jet categories. These simulated samples are corrected for any differences
between data and MC description in lepton trigger, identification and reconstruction efficien-
cies. Scaling factors, defined as the ratio efficiencydata/efficiencyMC as a function of the lepton
pseudorapidity, are determined with samples of Z → `+`− events. An invariant mass (m`+`−)
constraint and tight quality requirements assigned to one of the leptons (“tag”) allow the other
lepton to be used as a probe to test the different steps in lepton identification (“tag-and-probe”
method) [32]. The precision in the factor C is limited by the size of the MC sample employed;
its statistical uncertainty is propagated as a systematic uncertainty to the W + c cross section.

The signal region for the D± channel is defined by the constraint ∆m(D±) ≡ |mrec(D±) −
1.87 GeV| < 0.05 GeV, where mrec(D±) is the reconstructed mass of the D± candidate (Fig. 2).
The same requirement is applied to the MC simulations in order to determine the correction fac-
tor C. We estimate values of C = 0.1114± 0.0033 (pµ

T > 25 GeV) and C = 0.0834± 0.0032 (pe
T >

35 GeV), where the quoted uncertainties are statistical only. The background is fully dom-
inated by the nonresonant W + c component. It is subtracted from the selected number of
events in the data window by using the number of events selected in a control region away
from the resonance, extending up to a difference of 200 MeV with respect to the nominal D±

mass, N[0.05 GeV < ∆m(D±) < 0.20 GeV]. This number is scaled by the ratio N[∆m(D±) <
0.05 GeV]/N[0.05 GeV < ∆m(D±) < 0.20 GeV] observed in the simulation in order to obtain
the number of background events expected in the reference window. This procedure is largely
independent of uncertainties in the charm fractions present in PYTHIA. Systematic biases due
to the assumed nonresonant background subtraction are expected to be negligible compared
to the statistical uncertainty, given the approximate agreement between data and MC distribu-
tions.

The signal region for the D∗±(2010) channel is restricted to the interval ∆m(D∗±(2010)) ≡
|mrec(D∗±(2010)) − mrec(D0) − 145 MeV| < 5 MeV, where mrec(D∗±(2010)) − mrec(D0) is the
reconstructed mass difference between the D mesons (Fig. 3). The same procedure is applied
to the MC simulations in order to determine the correction factor C. We estimate values of
C = 0.0849± 0.0040 (pµ

T > 25 GeV) and C = 0.0559± 0.0036 (pe
T > 35 GeV), where the quoted

uncertainties are statistical only. As in the D± case, the background is subtracted from the
selected number of data events in a sideband sample, 5 MeV < ∆m(D∗±(2010)) < 20 MeV.
This number is scaled by the ratio N[∆m(D∗±(2010)) < 5 MeV]/N[5 MeV < ∆m(D∗±(2010)) <
20 MeV] observed in the simulation.

For the semileptonic channel, Nsel is given by the number of events with a W-boson candi-
date decaying into a high-pT muon or electron and an identified muon inside the jet passing
the requirements described in Section 5.3. The correction factors C for the different lepton
thresholds are estimated in the MC simulation as C = 0.2035 ± 0.0021 (pµ

T > 25 GeV) and
C = 0.1706± 0.0021 (pe

T > 35 GeV), where the quoted uncertainties are statistical only. The
number of background events remaining after selection is estimated from the simulated sam-
ples. In the sample with two opposite-sign muons, the residual Drell–Yan background corre-
sponds to events with significant missing transverse energy and one low-pT muon inside a jet.
Potential discrepancies between data and MC description in this particular phase space region
are evaluated by analyzing the Drell–Yan-dominated control sample with dimuon invariant
masses above 85 GeV. A correction factor of 1.2± 0.1 provides agreement between data and
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MC simulation in this region and it is applied to estimate the background in the signal region.
The uncertainty in this correction factor is propagated as a systematic uncertainty in the cross
section measurement. This takes into account possible differences in the description of events
below and around the Z-boson peak, where this factor is derived.

Table 1 contains all the relevant inputs used in the measurements and the resulting cross sec-
tions in the different subchannels. The sources of systematic uncertainties affecting the mea-
surement are discussed in Section 6.1.

Table 1: Cross section results for three specific final states. Here Nsel is the estimated number of
selected events in the signal region (around the resonance in the case of D± and D∗±(2010) final
states). Nsel − Nbkg is the estimate for the signal events after background subtraction using the
method described in the text, C is the acceptance and efficiency correction factor, and σ(W + c)
is the measured W + c cross section after correction for the charm fractions as discussed in the
text. Results obtained with the sample of W bosons decaying into a muon and a neutrino and
for the two muon transverse momentum thresholds (pµ

T > 25 GeV and pµ
T > 35 GeV) are shown

in the first two blocks of the table. Results obtained when the W boson decays into an electron
and a neutrino (pe

T > 35 GeV) are given in the lowest block of the table. All uncertainties quoted
in the table are statistical, except for the measured cross sections, which include systematic
uncertainties due to the sources discussed in Section 6.1.

W→ µν, pµ
T > 25 GeV

Final state Nsel Nsel − Nbkg C [%] σ(W + c) [pb]
D± 1502± 62 1203± 91 11.1± 0.3 103.6± 7.8 (stat.)± 8.1 (syst.)

D∗±(2010) 318± 21 309± 23 8.5± 0.4 116.9± 8.7 (stat.)± 10.0 (syst.)
c→ µ 14215± 196 9867± 237 20.4± 0.2 106.5± 2.6 (stat.)± 9.6 (syst.)

W→ µν, pµ
T > 35 GeV

Final state Nsel Nsel − Nbkg C [%] σ(W + c) [pb]
D± 1209± 55 981± 79 11.4± 0.4 82.9± 6.7 (stat.)± 6.4 (syst.)

D∗±(2010) 260± 19 248± 21 8.6± 0.5 92.3± 7.8 (stat.)± 8.2 (syst.)
c→ µ 11462± 172 7875± 207 21.6± 0.2 79.9± 2.1 (stat.)± 6.9 (syst.)

W→ eν, pe
T > 35 GeV

Final state Nsel Nsel − Nbkg C [%] σ(W + c) [pb]
D± 838± 47 726± 55 8.3± 0.3 83.5± 6.3 (stat.)± 7.1 (syst.)

D∗±(2010) 148± 15 145± 18 5.6± 0.4 83.3± 10.4 (stat.)± 8.5 (syst.)
c→ µ 7156± 151 6701± 175 17.1± 0.2 86.5± 2.2 (stat.)± 6.9 (syst.)

For each W-boson decay channel and lepton pT threshold considered, the cross sections mea-
sured from the three charm meson decay samples are consistent and are combined. Measure-
ments performed in the muon and electron channel with a lepton pT threshold of 35 GeV are
also combined. The combination is a weighted average of the individual measurements taking
into account their statistical and systematic uncertainties. Systematic uncertainties arising from
a common source and affecting several measurements are considered to be fully correlated.

For pµ
T > 25 GeV the average W + c cross section is

σ(pp→W + c + X)×B(W→ µν)(pµ
T > 25 GeV) = 107.7± 3.3 (stat.)± 6.9 (syst.) pb.
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For p`T > 35 GeV we obtain

σ(pp→W + c + X)×B(W→ µν)(pµ
T > 35 GeV) = 82.9± 2.6 (stat.)± 5.1 (syst.) pb,

σ(pp→W + c + X)×B(W→ eν)(pe
T > 35 GeV) = 85.3± 2.5 (stat.)± 5.7 (syst.) pb,

σ(pp→W + c + X)×B(W→ `ν)(p`T > 35 GeV) = 84.1± 2.0 (stat.)± 4.9 (syst.) pb.

The average cross sections are dominated by the measurements in the semileptonic channel
(∼50%), followed by the D± channel (∼30%) and the D∗±(2010) channel (∼20%). The weight
of the W→ µν channel in the cross section measurement with a lepton pT threshold of 35 GeV
is ∼30% higher than the contribution from the W→ eν channel.

These measurements are largely background-free. The overall relative uncertainty, 6–7%, is
dominated by systematic uncertainties in the theoretical modeling of the signal and by exper-
imental uncertainties in the efficiency of the selection criteria. A detailed comparison with
theoretical predictions is provided in Section 9.

6.1 Systematic uncertainties in the W + c cross section measurement

The various sources of systematic uncertainties are presented in Table 2. The limited precision
in the branching fractions of the charm decays is one of the dominant sources of uncertainties.

Tracking reconstruction inefficiencies are intrinsically small (< 1% [42]). Given the nature of the
method used to build secondary vertices, tracks are assigned to either the primary or secondary
vertex in a way that may be different in data and MC simulation. In order to estimate the size
of a potential discrepancy, the set of secondary tracks is either increased by adding a nearby
primary track or decreased by dropping one of the original secondary tracks. A systematic
uncertainty of 3.3% in the measured cross sections is estimated from the observed differences
at the resonant D0 and D± peaks between data and simulation. Its impact on the final cross
sections is reduced after combination with the results from the semileptonic channel, which is
free of this uncertainty.

Uncertainties due to the pileup modeling are calculated using a modified pileup profile ob-
tained with a minimum bias cross section increased by its estimated uncertainty, ≈6%. Jet
energy scale uncertainties are extracted from dedicated CMS studies [19], which also take into
account possible variations in the jet flavour composition. Additional Emiss

T effects are esti-
mated by smearing the MT distribution in simulation in order to match the MT shape observed
in data. Their impact is ≈2% on the final measurement.

Lepton trigger and selection inefficiencies are included in the simulation by applying the cor-
responding data/MC scale factors determined in dedicated “tag-and-probe” studies as a func-
tion of the lepton pseudorapidity. For muons we estimate a 0.7% uncertainty according to CMS
studies on dimuon events in the Z-boson mass peak. In the electron case we consider the dif-
ference between switching on and off the efficiency scale factors, because of the presence of
missing transverse energy requirements at the trigger level that cannot be fully accounted by
using “tag-and-probe” techniques. The effect of momentum and energy resolution corrections
determined at the Z-boson mass peak is also propagated as an additional uncertainty. We com-
bine the uncertainties due to lepton identification, isolation, and trigger efficiencies with the
uncertainty in the lepton momentum and energy resolution in a single entry in Table 2.

The efficiency uncertainty for muons inside jets is taken to be 3.0% according to dedicated
studies in multijet events. The systematic uncertainty arising from the Drell–Yan background
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subtraction in the semileptonic channel is determined as the change in the cross section when
the correction factor to the MC simulation is varied within its uncertainties.

The propagation of the statistical uncertainty in the factor C to the cross section is not negligible
due to the limited size of the MC samples used. The uncertainties related to initial-state radi-
ation (ISR) are estimated by recalculating the factor C from samples generated with different
renormalization and factorization scales (half and twice the default scale Q2 used in the gener-
ation). The average value of the meson energy fraction in charm decays is varied by 4%, which
is about twice the uncertainty in the D∗±(2010) fragmentation determined at LEP [37, 39], in
order to cover possible uncertainties in the assumed shape. Other theoretical uncertainties in
C include PDF effects and potential biases due to the adoption of the MADGRAPH jet-parton
matching scheme as the reference to be compared with the MCFM calculations (≈ 1%).

The integrated luminosity measurement has a 2.2% uncertainty [43]. Physics backgrounds, in-
cluding the gluon-splitting W+ cc component, have a negligible contribution to the systematics
compared with the statistical uncertainties in the background subtraction.

Table 2: Breakdown of the different contributions to the total systematic uncertainty (∆syst) in
the combined σ(W+ c) measurements in the fiducial region given by pjet

T > 25 GeV, |ηjet| < 2.5,
|η`| < 2.1 for two different thresholds of the transverse momentum of the lepton from the W-
boson decay: p`T > 25 GeV (muon channel only) and p`T > 35 GeV (muon and electron channels
combined).

pµ
T > 25 GeV p`T > 35 GeV

Source ∆syst[%] ∆syst[%]
B(c→ D± → K∓π±π±) 1.5 1.5

B(c→ D∗±(2010)→ D0 → K∓π±) 0.7 0.6
B(c→ µ) 2.6 2.7

Vertex reconstruction 1.8 1.7
Pileup 0.9 0.8

Jet energy scale 3.0 1.7
Emiss

T 2.0 2.0
Lepton efficiency, resolution 0.8 1.5

Muon efficiency in charm decay 1.4 1.5
Drell–Yan background 1.4 0.9

MC statistics (C stat. uncert.) 1.6 1.3
ISR and renormalization/

0.2 0.2
factorization scales

Fragmentation function 0.8 0.6
Other theoretical uncertainties 0.8 0.7

Luminosity 2.2 2.2
Total 6.3 5.7

6.2 Characterization of W + c kinematics

The high signal purity of the selected samples allows a deeper study of the properties of W +
c events. Figure 7 shows the distributions of the jet pseudorapidity and the jet momentum
fraction carried by the D± candidates (top row of plots) and the D∗±(2010) candidates (middle
row of plots), while the jet pseudorapidity and the jet momentum fraction carried by the muon
is shown for the semileptonic candidates (bottom row of plots). The latter observable is directly
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related to the charm fragmentation function. The normalization of the W + c component in the
simulation has been scaled by a factor of 1.1 in order to match approximately the experimental
rate measured in data. Electron and muon channels are added in order to enhance the statistical
power of the comparison. All distributions show reasonable agreement with the predictions of
MADGRAPH + PYTHIA, although the experimental charm fragmentation spectra are slightly
harder than the predicted ones.

7 Measurement of the differential cross section as a function of
the lepton pseudorapidity

The W + c cross section is also measured differentially with respect to the absolute value of
the pseudorapidity of the lepton from the W-boson decay. We first determine the normalized
differential cross section, (1/σ(W+ c))dσ(W+ c)/d|η|. The absolute differential cross section
is derived from the normalized one just by scaling to the average cross section presented in the
previous section.

For this measurement, the inclusive three-prong and two-prong samples of W + c candidates
are used. In addition, the semileptonic sample is employed. Five bins in the absolute value of
the lepton pseudorapidity are considered: [0, 0.35], [0.35, 0.7], [0.7, 1.1], [1.1, 1.6], [1.6, 2.1]; this
binning is chosen in order to have a uniform distribution of the events among the five bins.

The normalized differential cross section is computed from the observed number of OS− SS
events with the lepton from the W-boson emitted in a given pseudorapidity bin (Nsel,i), after
subtraction of the residual background (Nbkg,i), which is evaluated with the simulated samples.
A bin-by-bin correction (Cnorm

i ) is used to correct (Nsel,i − Nbkg,i) for detector inefficiencies. For
this differential cross section only the differences among rapidity bins are relevant. Hence we
define the lowest rapidity bin [0, 0.35] as Cnorm

1 = 1.0 and compute the correction factors rel-
ative to this bin. These correction factors are displayed in Table 3. For Cnorm

i only selection
requirements related to the W-boson identification and jet selection are applied; these will be
used to correct the observed events in the semileptonic sample. This procedure is done sepa-
rately for events with a secondary vertex using the correction factors Cnorm

SV , which are applied
to the events in the inclusive three- and two-prong samples. Global factors correcting for effects
independent of the pseudorapidity of the lepton from the W-boson decay affect equally all bins
and cancel in the normalization. The statistical uncertainty in the Cnorm

i factors is propagated
as a systematic uncertainty to the normalized differential cross section.

Table 3: Correction factors Cnorm used for the calculation of the differential measurements.
Statistical uncertainties in Cnorm are typically 0.3% while in Cnorm

SV they are roughly 1%.

W→ µν W→ eν

pµ
T > 25 GeV pµ

T > 35 GeV pe
T > 35 GeV

[|η|min, |η|max] Cnorm Cnorm
SV Cnorm Cnorm

SV Cnorm Cnorm
SV

[0, 0.35] 1.00 1.00 1.00 1.00 1.00 1.00
[0.35, 0.7] 1.07 1.07 1.06 1.06 1.01 0.99
[0.7, 1.1] 0.98 0.97 0.98 0.96 1.01 1.01
[1.1, 1.6] 0.96 0.94 0.97 0.95 0.73 0.69
[1.6, 2.1] 0.90 0.86 0.91 0.87 0.72 0.65

The number of events selected, Nsel,i, in the inclusive three-prong sample is subject to the con-
straint that the invariant mass of the three tracks from the vertex, m(K∓π±π±) is smaller than
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Figure 7: Distributions of W + c selected events in the different charm decay channels as a
function of the jet pseudorapidity (left) and the jet momentum fraction (right) carried by the D
meson or by the muon inside the jet. The top row corresponds to the D± decay channel, the
middle row corresponds to the D∗±(2010) decay channel, and the bottom row corresponds to
semileptonic charm decays into muons. Only events in the signal region used to determine the
cross section are used. The Monte Carlo predictions have been scaled by a factor of 1.1 in order
to approximately match the W + c yield measured in data.
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2.5 GeV. The events included in the inclusive two-prong sample have a mass difference of less
than 0.7 GeV between (1) the invariant mass of the two-track system plus the closest track from
the primary pp interaction m(K∓π±π±), and (2) the invariant mass of the two-track system
m(K∓π±). For the semileptonic channel Nsel,i is given by the number of events with a W-
boson candidate decaying into a high-pT lepton and an identified muon inside the jet passing
the requirements described in Section 5.3. The assignment to the corresponding ith bin in the
differential distribution is determined by the absolute value of the pseudorapidity of the lepton
from the W-boson decay.

The normalized differential cross sections are presented graphically in Fig. 8. The number of
OS− SS events in each lepton pseudorapidity bin for the three charm meson decay samples
are detailed in Tables 11, 12, and 13 of Appendix A, together with the expected residual back-
ground Nbkg,i and the numerical values of the normalized cross sections. The estimation of
this background contamination has large statistical uncertainties due to the limited size of the
MC samples, mainly for the data with a displaced secondary vertex. This uncertainty is propa-
gated to the differential cross sections as a systematic uncertainty in the measurement. Unlike
the W → eν sample, there is a sizable background contribution in the W → µν sample arising
from Drell–Yan events.
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Figure 8: Normalized differential cross section distribution of W + c (W → `ν) events as a
function of the absolute value of the pseudorapidity of the lepton from the W-boson decay.
The first two plots show the results from the W→ µν sample, with pµ

T > 25 GeV (left plot) and
pµ

T > 35 GeV (middle plot). The right plot shows the results from the W → eν sample, with
pe

T > 35 GeV. The results obtained with the inclusive three-prong sample are shown as open
points. Solid squares represent the results obtained with the inclusive two-prong sample and
the open triangles give the result from the semileptonic sample. Data points showing the results
from the three-prong and the semileptonic samples are slightly displaced in the horizontal axis
for better visibility of the results.

The normalized differential cross sections measured with the different W + c subsamples and
for the two W → `ν decay channels are consistent. Therefore, the results obtained in the
W→ µν channel with pµ

T > 25 GeV are averaged, as are the results for the W→ µν and W→ eν
channels with p`T > 35 GeV. These combinations are a weighted average of the individual
measurements taking into account their statistical and systematic uncertainties. Systematic
uncertainties arising from a common source and affecting several measurements are considered
to be fully correlated among them. The existing statistical correlations among the normalized
cross section in the five pseudorapidity bins are included in the combination. These averaged
values are given in Table 4. The corresponding correlation matrices are presented in Table 5.
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The normalized differential cross sections obtained for pµ
T > 25 GeV and p`T > 35 GeV are com-

bined with the respective W + c cross sections presented in Section 6 to obtain the absolute
differential cross sections, dσ(W + c)/d|η|. Results are shown in Table 6. Normalized differ-
ential cross section and total cross section measurements are essentially uncorrelated and the
full covariance matrices for the absolute differential cross sections can be obtained by propa-
gating the information contained in Tables 4 and 5 and the total uncertainty in the W + c cross
sections.

Table 4: The normalized differential cross section as a function of the absolute value of the
lepton pseudorapidity. These results are the average of the three samples (inclusive three-
prong, inclusive two-prong, and semileptonic). The left column shows the results obtained
with the W → µν sample for muons with pT > 25 GeV, while the right column combines the
results obtained with the W→ µν and W→ eν samples for leptons with pT > 35 GeV.

Normalized differential cross section, (1/σ(W + c))dσ(W + c)/d|η|
[|η|min, |η|max] p`T > 25 GeV p`T > 35 GeV

[0, 0.35] 0.638± 0.016 (stat.)± 0.012 (syst.) 0.622± 0.013 (stat.)± 0.010 (syst.)
[0.35, 0.7] 0.556± 0.016 (stat.)± 0.012 (syst.) 0.585± 0.014 (stat.)± 0.010 (syst.)
[0.7, 1.1] 0.527± 0.015 (stat.)± 0.011 (syst.) 0.541± 0.012 (stat.)± 0.009 (syst.)
[1.1, 1.6] 0.416± 0.012 (stat.)± 0.009 (syst.) 0.407± 0.010 (stat.)± 0.008 (syst.)
[1.6, 2.1] 0.326± 0.012 (stat.)± 0.009 (syst.) 0.316± 0.010 (stat.)± 0.007 (syst.)

Table 5: Correlation matrices for the averaged normalized differential cross sections (1/σ(W +
c))dσ(W + c)/d|η|. Matrices are symmetric and only the lower part of them is shown. The
top matrix is for the normalized differential cross section requiring that the pT of the lepton be
larger than 25 GeV (W→ µν sample only). The bottom one refers to the combination of results
obtained with the W→ µν and W→ eν samples for leptons with pT > 35 GeV.

p`T > 25 GeV
[|η|min, |η|max] [0, 0.35] [0.35, 0.7] [0.7, 1.1] [1.1, 1.6] [1.6, 2.1]

[0, 0.35] 1.00
[0.35, 0.7] −0.22 1.00
[0.7, 1.1] −0.24 −0.22 1.00
[1.1, 1.6] −0.26 −0.26 −0.28 1.00
[1.6, 2.1] −0.24 −0.24 −0.26 −0.26 1.00

p`T > 35 GeV
[|η|min, |η|max] [0, 0.35] [0.35, 0.7] [0.7, 1.1] [1.1, 1.6] [1.6, 2.1]

[0, 0.35] 1.00
[0.35, 0.7] −0.20 1.00
[0.7, 1.1] −0.22 −0.21 1.00
[1.1, 1.6] −0.26 −0.26 −0.28 1.00
[1.6, 2.1] −0.24 −0.24 −0.25 −0.27 1.00

7.1 Systematic uncertainties in the normalized differential cross section mea-
surement

The dominant source of systematic uncertainty in the normalized differential cross sections
from the three samples is the limited size of the MC samples. It impacts the statistical accuracy
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Table 6: The differential cross section as a function of the absolute value of the lepton pseudo-
rapidity. These results are the average of the three samples (inclusive three-prong, inclusive
two-prong, and semileptonic). The left column shows the results obtained with the W → µν
sample for muons with pT > 25 GeV, while the right column combines the results obtained
with the W→ µν and W→ eν samples for leptons with pT > 35 GeV.

Differential cross section, dσ(W + c)/d|η| [pb]
[|η|min, |η|max] p`T > 25 GeV p`T > 35 GeV

[0, 0.35] 68.7± 2.7 (stat.)± 4.6 (syst.) pb 52.3± 1.7 (stat.)± 3.2 (syst.) pb
[0.35, 0.7] 59.9± 2.5 (stat.)± 4.0 (syst.) pb 49.2± 1.6 (stat.)± 3.0 (syst.) pb
[0.7, 1.1] 56.7± 2.4 (stat.)± 3.8 (syst.) pb 45.5± 1.5 (stat.)± 2.7 (syst.) pb
[1.1, 1.6] 44.8± 1.9 (stat.)± 3.2 (syst.) pb 34.2± 1.2 (stat.)± 2.1 (syst.) pb
[1.6, 2.1] 35.1± 1.7 (stat.)± 2.4 (syst.) pb 26.6± 1.0 (stat.)± 1.7 (syst.) pb

in the estimation of the residual background after the SS subtraction, and to a lesser extent,
in the determination of the correction factors Cnorm

i . As summarized below, most of the other
sources that have been discussed in Section 6 have a negligible impact in the differential distri-
butions since their effects largely cancel out in the ratios.

Differential distributions are mostly independent of jet energy scale effects since they are mea-
sured as a function of the pseudorapidity of the lepton from the W-boson decay and the
spanned jet kinematic region is similar in all cases, independently of the pseudorapidity of
the lepton. Possible effects due to jet energy scale uncertainties are evaluated by changing the
jet energy scale in the simulated W + c sample in accord with the results of dedicated studies
by CMS [19]. The variations observed in the resulting differential distribution can be largely
explained by statistical fluctuations in the MC sample.

The calibration factors for lepton momentum scale and resolution have been derived from de-
tailed studies of the position and width of the Z-boson peak [44, 45]. The systematic uncertainty
in the normalized differential cross section is estimated in the W → eν channel by comparing
the resulting distributions with and without calibration corrections. Variations are smaller than
1% in the barrel, and of the order of 1.5% in the endcap region. In the W → µν channel the
measurement is repeated many times, varying the muon calibration factors within their uncer-
tainties and comparing to the values obtained when applying the central value of the correcting
factors. The width of the resulting distribution is taken as the systematic uncertainty arising
from limited knowledge of the muon momentum scale and resolution. Uncertainties between
0.2% and 0.4% in the normalized differential distributions are obtained, depending on the par-
ticular muon pseudorapidity bin, the sample selection, and the pµ

T threshold.

We estimate a residual ∼0.35% systematic uncertainty in the muon efficiency scaling factors,
which are treated as uncorrelated among the different pseudorapidity bins. For the W → eν
channel, the effect of the efficiency corrections in the measured ratios (∼0.25%) is computed
and taken as an estimation of the systematic uncertainty.

In the modeling of the background remaining after the SS subtraction, the only physical pro-
cess with a visible contribution to the final sample is Drell–Yan production, which, when one
of the two muons is inside a jet, mimics the semileptonic sample in the W → µν channel. The
correction factor (1.2± 0.1) applied to the Drell–Yan prediction is varied by one sigma and the
differential distribution is reevaluated. Variations smaller than 0.3% are observed and taken as
the associated systematic uncertainty. Top-quark contributions have also been varied by 6% for
tt production and by 15% for single-top-quark production. Variations in the differential distri-
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butions are smaller than 0.2%. A total systematic uncertainty of 0.3% is assumed to account for
the background subtraction.

It is observed that the uncertainties related to the parton distribution function of the strange
quark within the same PDF set are smaller than, or equal to, the differences between the central
values obtained with MSTW08 [28], CT10 [24], and NNPDF23 [46]. However, no variation in
the C correction factors computed with these sets of PDFs is observed and therefore no change
is expected in the final result.

Systematic uncertainties arising from other sources, such as knowledge of the event pileup or
the average energy fraction in charm fragmentation have been evaluated with the W + c MC
sample and are found to be negligible.

The systematic uncertainties in the absolute differential cross sections given in Table 6 are dom-
inated by the uncertainties in the total W + c cross section. The relative importance of the dif-
ferent sources essentially follows the breakdown of the contributions presented in Table 2. The
effect of the limited MC statistics is increased because both measurements, total and normal-
ized differential cross sections, are affected.

8 Measurement of the cross section ratio σ(W+ + c)/σ(W− + c)
Cross section ratios σ(W+ + c)/σ(W− + c) are also measured for the three specific final states
discussed in the previous section. They are determined as the ratio of the OS− SS samples in
which the lepton from the W-boson decay is positively or negatively charged:

R±c =
σ(W+ + c)
σ(W− + c)

=
(N+

sel − N+
bkg)

(N−sel − N−bkg)
.

The total cross section ratio and the ratio as a function of the absolute value of the pseudora-
pidity of the lepton from the W-boson decay are determined.

The numbers for N+
sel and N−sel are extracted from the same subsamples used for the differential

cross section measurement presented in the previous section and by separating the events ac-
cording to the sign of the lepton from the W-boson decay. The background contributions N+

bkg

and N−bkg to N+
sel and N−sel have a small effect in the ratio and are neglected in the calculation.

The largest effect is due to the Drell–Yan contamination in the W → µν channel and that is
reduced by requiring that the transverse momentum of the muon inside the jet be less than
12 GeV. No efficiency corrections are applied since they affect the positively and negatively
charged samples equally and cancel in the ratio.

Figure 9 presents the cross section ratios R±c (|η`|) obtained from the three samples. The numer-
ical values of the cross section ratio are detailed in Table 14 in Appendix A. The last row of each
set of results in the table gives the cross section ratio for the full lepton absolute pseudorapidity
range [0., 2.1].

The effect of neglecting the background is estimated to be of the order of 0.3% and 0.2% for the
inclusive cross section ratio in the inclusive three- and two-prong samples, respectively. It is 1%
(0.3%) in the semileptonic sample in the W→ µν (W→ eν) channel. In the ratios as a function
of the absolute value of the pseudorapidity, the largest effect is for the highest |η| bin for all
samples (∼1%) except for the semileptonic sample in the W → µν channel where it reaches
∼4%. Other sources of systematic uncertainties in the cross section ratios are those related
to lepton reconstruction, identification, and, in particular, any lepton-charge-dependent effect
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Figure 9: Measured ratios σ(W+ + c)/σ(W− + c) as a function of the absolute value of the
lepton pseudorapidity from the W-boson decay. The first two plots show the results from the
W → µν sample, with pµ

T > 25 GeV (left plot) and pµ
T > 35 GeV (middle plot). The right

plot shows the results from the W → eν sample, with pe
T > 35 GeV. The results obtained

with the inclusive three-prong sample are shown as open points. Solid squares represent the
results obtained with the inclusive two-prong sample and the open triangles give the result
from the semileptonic sample. Data points showing the results from the three-prong and the
semileptonic samples are slightly displaced in the horizontal axis for better visibility of the
results.

that may affect the W+ and W− candidate samples differently. The systematic uncertainty in
the cross section ratio due to lepton momentum scale and resolution is estimated following
the same technique used for the normalized differential cross section. The uncertainties in the
W → eν channel are smaller than 1% in the barrel, and approximately 1.5% in the endcap re-
gion. They vary in the range 0.4–0.8% in the W → µν channel, depending again on the muon
pseudorapidity bin, the sample, and the muon pT threshold. They reduce to ∼0.2–0.3% for
the inclusive cross section ratios since the effect of muon momentum correction factors for the
muon pseudorapidity bins cancels to a large extent, thus decreasing the final uncertainty. The
correction factors to the lepton reconstruction efficiencies for positively and negatively charged
leptons are the same within their statistical uncertainty and thus no additional systematic un-
certainties are assigned to this source.

The lepton charge misassignment in CMS is smaller than 0.3% for electrons [47] and of the
order of 10−4 for muons [48]. The associated systematic uncertainty in the cross section ratio
is proportional to the relative difference between W+ + c and W− + c production. Since this is
small because the measured cross section ratios are close to 1, the total effect is neglected.

The cross section ratios, both total and as a function of the lepton pseudorapidity, measured
with the different W + c samples and for the two W → `ν decay channels are consistent. The
results obtained in the W → µν channel with pµ

T > 25 GeV are averaged, as are the results for
the W → µν and W → eν channels with p`T > 35 GeV. Statistical and systematic uncertainties
of the individual measurements are taken into account in the combination process. Systematic
uncertainties arising from a common source and affecting several measurements are considered
to be fully correlated.
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The following averaged R±c ratios in the full pseudorapidity interval are derived:

σ(pp→W+ + c + X)
σ(pp→W− + c + X)

(pµ
T > 25 GeV) = 0.954± 0.025 (stat.)± 0.004 (syst.),

σ(pp→W+ + c + X)
σ(pp→W− + c + X)

(pµ
T > 35 GeV) = 0.947± 0.026 (stat.)± 0.005 (syst.),

σ(pp→W+ + c + X)
σ(pp→W− + c + X)

(pe
T > 35 GeV) = 0.927± 0.029 (stat.)± 0.012 (syst.),

σ(pp→W+ + c + X)
σ(pp→W− + c + X)

(p`T > 35 GeV) = 0.938± 0.019 (stat.)± 0.006 (syst.).

and the corresponding averaged values as a function of the absolute value of the pseudorapid-
ity are presented in Table 7.

Table 7: Measured ratios σ(W+ + c)/σ(W− + c) as a function of the absolute value of the
pseudorapidity of the lepton from the W-boson decay. The results are the average of the three
different samples (inclusive three-prong and two-prong and semileptonic). The left column
shows the results obtained with the W → µν sample for muons with pµ

T > 25 GeV, while the
right column combines the results obtained with the W→ µν and W→ eν samples for leptons
with p`T > 35 GeV.

Charged cross section ratio, σ(W+ + c)/σ(W− + c)
[|η|min, |η|max] p`T > 25 GeV p`T > 35 GeV

[0, 0.35] 1.013± 0.052 (stat.)± 0.005 (syst.) 0.993± 0.041 (stat.)± 0.007 (syst.)
[0.35, 0.7] 0.960± 0.053 (stat.)± 0.005 (syst.) 0.977± 0.039 (stat.)± 0.007 (syst.)
[0.7, 1.1] 0.897± 0.051 (stat.)± 0.008 (syst.) 0.927± 0.040 (stat.)± 0.008 (syst.)
[1.1, 1.6] 1.062± 0.061 (stat.)± 0.014 (syst.) 0.948± 0.046 (stat.)± 0.010 (syst.)
[1.6, 2.1] 0.776± 0.058 (stat.)± 0.016 (syst.) 0.784± 0.050 (stat.)± 0.011 (syst.)

A larger production yield of W− + c than of W+ + c is expected because the former process
involves a d quark whereas the latter involves a d (sea) antiquark. This prediction is confirmed
since the measured cross section ratio σ(W+ + c)/σ(W− + c) is smaller than 1.0. The differ-
ence in production between W+ + c and W− + c is not constant over the full pseudorapidity
range. Production cross sections are similar in the central region, R±c ∼1, for absolute values of
the pseudorapidity of the lepton smaller than 0.35. The ratio reduces to about 0.8 for the most
forward lepton pseudorapidity. A decrease of the cross section ratio with the lepton pseudora-
pidity is expected, since in this case we are probing a region of Bjorken x where the difference
between the d and d contributions is larger.

9 Results and comparisons with theoretical predictions
The measured total and differential cross sections and cross section ratios can be compared to
analytical calculations from the MCFM program. The W + c process is available in MCFM up to
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O(αs
2) with a massive charm quark (m(c) = 1.5 GeV). The MCFM predictions for this process

do not include contributions from gluon splitting into a cc pair, but only contributions where
the strange (or the down) quark couples to the W boson. The implementation of W + c follows
the calculation for the similar W+top-quark process [49].

The parameters of the calculation have been adjusted to match the experimental measurement:
pjet

T > 25 GeV and |ηjet| < 2.5. Two sets of predictions are computed, utilizing the different
lepton pT thresholds used in the analysis: p`T > 25 GeV in the W→ µν channel and p`T > 35 GeV
in the W→ µν and in the W→ eν channel.

We show predictions for three NNLO PDF sets: MSTW2008, CT10, and NNPDF2.3. These
three PDF sets have in common the use of a global data set with a wide variety of observables
to constrain PDFs, and, in particular, they include neutrino charm production data to provide
information on the strange-quark content of the proton. In addition, we compare with predic-
tions using the NNPDF2.3coll NNLO set [50], which is based on high energy collider data only,
and thus does not rely on the neutrino DIS charm information. In particular, it includes W and
Z production data from ATLAS, CMS, and LHCb, and leads to a larger strangeness content
of the proton than that of global PDF sets. These four sets span a wide range of values for the
strange-quark PDF, and the strangeness content from other PDF analyses falls within this inter-
val. NNPDF2.3 has the smallest strangeness, and NNPDF2.3coll the largest one. We have also
computed the theoretical predictions for the ABM11 [51], JR09 [52], and HERAPDF1.5 [53, 54]
PDF sets and we discuss these results below as well.

Both the factorization and the renormalization scales are set to the value of the W-boson mass.
To estimate the uncertainty from missing higher perturbative orders, cross section predictions
are computed by varying independently the factorization and renormalization scales to twice
and half the nominal value (with the constraint that the ratio of scales is never larger than
two). The envelope of the cross sections with these scale variation defines the theoretical scale
uncertainty.

The value of αs(MZ) in the calculation is set to the central value given by the respective PDF
groups. Uncertainties in the predicted cross sections associated with αs(MZ) are smaller than
the uncertainties from the PDFs, and have been neglected in the following comparisons.

9.1 Total cross section

The measured total cross sections are consistent with theoretical expectations. However, there
are significant variations depending on the PDF set used in the prediction. The detailed theo-
retical predictions are summarized in Table 8 where the central value of the prediction is given,
together with the uncertainty due to the PDF variations within each set. The experimental re-
sults reported in this document are also included in the table. The size of the PDF uncertainties
depends on the different methodology used by the various groups. In particular, they depend
on the parametrization of the strange-quark PDF and on the definition of the one-standard-
deviation uncertainty band. In the case of NNPDF2.3coll, the larger uncertainties arise from the
lack of direct constraints on strangeness in a collider-only fit.

These predictions are compared graphically to the experimental measurement in Fig. 10. Only
PDF uncertainties are shown. Scale uncertainties in the total cross section are of the order of
±5%. From Fig. 10 we see that measured W+ c cross sections agree with the theoretical predic-
tions using the PDF sets introduced above within theoretical and experimental uncertainties.
The total cross sections for ABM11, JR09, and HERAPDF1.5 are respectively 98.9 pb (78.0 pb),
80.0 pb (63.4 pb) and 96.9 pb (76.7 pb) for a lepton pT threshold of 25 (35)GeV. As discussed
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Table 8: Predictions for σ(W + c) from MCFM at NLO. Kinematic selection follows the experi-
mental requirements: pjet

T > 25 GeV, |ηjet| < 2.5, and |η`| < 2.1. Partons are joined using an
anti-kT algorithm with a distance parameter of 1. Theoretical predictions are computed with
MCFM for two different thresholds in the lepton pT: p`T > 25 (35)GeV in the first (second) col-
umn of predictions. For every PDF set, the central value of the prediction is given, together
with the relative uncertainty as prescribed from the PDF set. The uncertainty associated with
scale variations is ±5%. The last row in the table gives the experimental results presented in
this document.

p`T > 25 GeV p`T > 35 GeV
PDF set σ(W + c) [pb] ∆PDF[%] σ(W + c) [pb] ∆PDF[%]

MSTW08 100.7 +1.8
−2.2 78.7 +1.8

−2.2

CT10 109.9 +7.0
−5.8 87.3 +7.1

−5.9

NNPDF2.3 99.4 ±4.2 78.9 ±4.2
NNPDF2.3coll 129.9 ±11.6 102.7 ±11.5

CMS 107.7± 3.3 (stat.)± 6.9 (syst.) 84.1± 2.0 (stat.)± 4.9 (syst.)

in [4], the strangeness in ABM11 and HERAPDF1.5 is close to that of MSTW and NNPDF,
hence the similarities in the predictions.

9.2 Differential cross section

Predictions for the differential (both absolute and normalized) cross sections are obtained from
analytical calculations from MCFM using the same binning as in the data analysis: [0, 0.35], [0.35,
0.7], [0.7, 1.1], [1.1, 1.6], [1.6, 2.1]. Table 9 presents the predictions for (1/σ(W + c))dσ(W +
c)/d|η|. The differences among the central value of the predictions obtained with the various
PDF sets are of the same order as the associated uncertainties (at 68% confidence level, CL). As
in the case of the inclusive cross section, the different size of the associated uncertainties arises
from the different assumptions of PDF groups about the strange quark and antiquark content
of the proton and from the different experimental inputs included [3]. As expected, PDF un-
certainties increase at forward pseudorapidities, where the range of Bjorken x is outside that
covered by available data sensitive to strangeness. Systematic uncertainties due to the scale
variations are smaller than 1% for all muon pseudorapidity bins.

The theoretical predictions are compared with the average of the experimental measurements
presented in Section 7. Figure 11 (Fig. 12) compares the measurements and predictions for the
normalized cross sections (absolute cross sections). There is agreement between the measured
distributions and the theoretical predictions. We note that a comparison among the several
predictions in Figs. 11 and 12 may lead to different conclusions. For instance, NNPDF2.3coll
gives the smallest prediction in the first rapidity bin in Fig. 11, whereas it gives the highest
value in Fig. 12. The normalized differential cross sections probe the shape of the strange-
quark PDF whereas the behaviour of the absolute differential cross sections is also driven by
the overall magnitude of the strange-quark PDF.

9.3 Charged cross section ratio

Theoretical predictions for σ(W+ + c) and σ(W−+ c) production are computed independently
under the same conditions explained before and for the same lepton pseudorapidity intervals
used in the analysis. Expectations for the cross section ratio σ(W+ + c)/σ(W−+ c) are derived
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Figure 10: Comparison of the theoretical predictions for σ(W + c) computed with MCFM and
several sets of PDFs with the average of the experimental measurements. The top plot shows
the predictions for a pT threshold of the lepton from the W-boson decay of p`T > 25 GeV and
the bottom plot presents the predictions for p`T > 35 GeV. The uncertainty associated with scale
variations is ±5%.
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Table 9: The (1/σ(W + c))dσ(W + c)/d|η| theoretical predictions calculated with MCFM at
NLO. Kinematic selection follows the experimental requirements: pjet

T > 25 GeV, |ηjet| < 2.5,
and |η`| < 2.1. Partons are joined using an anti-kT algorithm with a distance parameter of 1.
Predictions for W → `ν when the transverse momentum of the lepton from the W boson is
larger than 25 GeV are given in the first block of the table. The second block of predictions are
for W→ `ν production with p`T > 35 GeV. For every PDF set, the central value of the prediction
is given, together with the relative uncertainty as prescribed from the PDF set. The uncertainty
associated with scale variations is smaller than 1%.

p`T > 25 GeV
MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|η|min, |η|max]
1
σ

dσ
d|η| ∆PDF[%] 1

σ
dσ

d|η| ∆PDF[%] 1
σ

dσ
d|η| ∆PDF[%] 1

σ
dσ

d|η| ∆PDF[%]

[0, 0.35] 0.596 +0.5
−0.5 0.605 +1.3

−2.3 0.612 1.1 0.569 5.5
[0.35, 0.7] 0.566 +0.4

−0.4 0.576 +1.0
−1.8 0.590 0.9 0.556 4.4

[0.7, 1.1] 0.518 +0.2
−0.2 0.527 +0.4

−0.7 0.521 0.4 0.513 1.9
[1.1, 1.6] 0.446 +0.3

−0.3 0.436 +1.3
−0.8 0.429 0.7 0.448 2.8

[1.6, 2.1] 0.327 +0.9
−1.0 0.316 +4.4

−2.4 0.314 2.1 0.354 9.6

p`T > 35 GeV
MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|η|min, |η|max]
1
σ

dσ
d|η| ∆PDF[%] 1

σ
dσ

d|η| ∆PDF[%] 1
σ

dσ
d|η| ∆PDF[%] 1

σ
dσ

d|η| ∆PDF[%]

[0, 0.35] 0.607 +0.6
−0.5 0.615 +1.4

−2.4 0.618 1.2 0.580 5.0
[0.35, 0.7] 0.582 +0.5

−0.4 0.588 +1.0
−1.9 0.587 0.9 0.568 3.8

[0.7, 1.1] 0.529 +0.2
−0.2 0.532 +0.4

−0.7 0.527 0.4 0.512 2.5
[1.1, 1.6] 0.431 +0.3

−0.3 0.428 +1.5
−0.9 0.436 0.8 0.438 1.4

[1.6, 2.1] 0.314 +1.0
−1.2 0.304 +4.9

−2.6 0.299 2.3 0.349 11.4
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Figure 11: Normalized differential cross section, (1/σ(W+ c))dσ(W+ c)/d|η|, as a function of
the absolute value of the pseudorapidity of the lepton from the W boson decay, compared with
the theoretical predictions. Theoretical predictions at NLO are computed with MCFM using four
different PDF sets. Kinematic selection follows the experimental requirements: pjet

T > 25 GeV,
|ηjet| < 2.5, and |η`| < 2.1. The transverse momentum of the lepton is larger than 25 GeV in
the left plot and larger than 35 GeV in the right plot. The data points are the average of the
results presented before with the three different samples: inclusive three- and two-prong and
semileptonic samples. In the right plot the results obtained with the W→ µν samples and W→
eν samples are combined. Symbols showing the theoretical expectations are slightly displaced
in the horizontal axis for better visibility of the predictions. The uncertainty associated with
scale variations is smaller than 1%.
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Figure 12: Differential cross section, dσ(W + c)/d|η|, as a function of the absolute value of the
pseudorapidity of the lepton from the W-boson decay, compared with the theoretical predic-
tions. Theoretical predictions at NLO are computed with MCFM and four different PDF sets.
Kinematic selection follows the experimental requirements: pjet

T > 25 GeV, |ηjet| < 2.5, and
|η`| < 2.1. The transverse momentum of the lepton is larger than 25 GeV in the left plot and
larger than 35 GeV in the right plot. The data points are the average of the results from the inclu-
sive three- and two-prong and semileptonic samples. In the right plot the results achieved with
the W → µν samples and W → eν samples are combined. Symbols showing the theoretical
expectations are slightly displaced in the horizontal axis for better visibility of the predictions.
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from them and are presented in Table 10. The last row in each block of predictions gives the
prediction of the charged cross section ratio for the full lepton pseudorapidity interval, |η`| <
2.1. We note that this ratio is sensitive to the strangeness asymmetry in the proton, but also to
the down quark and antiquark asymmetry from the Cabibbo-suppressed process gd → W−c
(gd → W+c). The d–d asymmetry is larger in absolute value than the difference between
strange quarks and antiquarks.

Table 10: Theoretical predictions for R±c (η`) ≡ σ(W+ + c)(|η`|)/σ(W− + c)(|η`|) calculated
with MCFM at NLO. Kinematic selection follows the experimental requirements: pjet

T > 25 GeV,
|ηjet| < 2.5, and |η`| < 2.1. Partons are joined using an anti-kT algorithm with a distance
parameter of 1. Predictions for W → `ν when the transverse momentum of the lepton from
the W boson is larger than 25 GeV are given in the first block of the table. The second block of
predictions are for W → `ν production with p`T > 35 GeV. For each PDF set, the central value
of the prediction is given, together with the relative uncertainty as prescribed from the PDF set.
The uncertainty associated with scale variations are of the order of 1–2%.

p`T > 25 GeV
MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|η|min, |η|max] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%]

[0, 0.35] 0.944 +1.2
−3.6 0.968 +0.2

−0.2 0.993 0.8 0.959 1.4
[0.35, 0.7] 0.941 +1.3

−3.5 0.965 +0.2
−0.2 0.920 1.0 0.975 1.5

[0.7, 1.1] 0.918 +1.7
−3.1 0.959 +0.3

−0.3 0.949 1.3 0.948 1.8
[1.1, 1.6] 0.871 +2.4

−2.7 0.951 +0.6
−0.5 0.893 2.0 0.913 2.6

[1.6, 2.1] 0.854 +3.1
−3.4 0.889 +1.2

−0.9 0.842 3.5 0.893 5.1
[0, 2.1] 0.906 +1.9

−2.8 0.949 +0.4
−0.4 0.922 1.5 0.937 2.0

p`T > 35 GeV
MSTW08 CT10 NNPDF2.3 NNPDF2.3coll

[|ηmin|, |ηmax|] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%] R±c ∆PDF[%]

[0, 0.35] 0.949 +1.2
−3.7 0.974 +0.2

−0.2 0.972 0.9 1.009 1.5
[0.35, 0.7] 0.932 +1.4

−3.5 0.964 +0.3
−0.3 0.957 1.0 0.984 1.6

[0.7, 1.1] 0.902 +1.8
−3.2 0.953 +0.4

−0.3 0.953 1.4 0.927 3.3
[1.1, 1.6] 0.882 +2.5

−2.7 0.918 +0.6
−0.5 0.909 2.2 0.886 5.1

[1.6, 2.1] 0.845 +3.4
−3.8 0.888 +1.2

−1.0 0.831 3.8 0.877 5.9
[0, 2.1] 0.904 +2.0

−2.7 0.942 +0.4
−0.4 0.923 1.6 0.936 2.4

Both the central values and the associated PDF uncertainties are quite different for the various
sets of predictions. These differences arise from the assumptions underlying each global fit.
For instance, the CT10 set assumes equal content of strange quark and antiquark in the pro-
ton, leading to a charged cross section ratio almost exclusively driven by the d–d asymmetry
and with a very small PDF uncertainty in the prediction. On the other hand, both MSTW08
and NNPDF2.3 provide independent parametrizations of the strangeness asymmetry, thus re-
sulting in larger PDF uncertainties. The MSTW08 and NNPDF2.3 predicted values for the
σ(W+ + c)/σ(W− + c) ratio in the full pseudorapidity region are smaller than in the CT10
case. As before, PDF uncertainties increase for large values of the lepton pseudorapidity. Sys-
tematic uncertainties in the cross section ratio due to the scale variations are smaller than 1% for
the full lepton absolute pseudorapidity range [0., 2.1] and of the order of 1–2% for the smaller
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pseudorapidity bins of the differential measurement.

Differences among the predictions are relatively large for some of the lepton pseudorapidity
bins, ∼4–5%, although this difference is covered by one standard deviation of the PDF uncer-
tainties. All PDF sets predict the decrease of the charged ratio with the absolute value of the
lepton pseudorapidity as a consequence of the higher d–d asymmetry at large values of Bjorken
x. The decrease with |η`| is more pronounced in the case of NNPDF2.3.

Averaged cross section ratios obtained in Section 8 are compared with theoretical predictions.
Figure 13 shows the measurements and the predictions for the total cross section ratios and
Fig. 14 shows the cross section ratios as a function of the absolute value of the lepton pseudo-
rapidity.

The theoretical predictions based on the CT10 PDF set agree with the measured cross section ra-
tios. Predictions from NNPDF23 and NNPDF23coll are well within the uncertainty of the mea-
surements, whereas expectations using MSTW08 lie about 1.5 sigma below the measurements.
For the cross section ratio as a function of the absolute value of the lepton pseudorapidity, there
is agreement between the measurements and the theoretical predictions, especially when the
transverse momentum of the lepton from the W-boson decay is larger than 35 GeV.

10 Summary and conclusions
The associated production of a W boson with a charm-quark jet in pp collisions at

√
s = 7 TeV

is experimentally established for the first time, using a data sample collected by the CMS ex-
periment during the 2011 LHC run with an integrated luminosity of 5 fb−1. The signature of
W-boson production together with a charm-quark jet is observed by identifying the leptonic
decay of the W boson into a muon or an electron and a neutrino and the reconstruction of
exclusive and inclusive final states from the decay of charm hadrons. In total, distinct W + c
signals are observed independently in six different final states.

The high performance of the CMS tracking detector and the algorithms devised for secondary-
vertex reconstruction allow the efficient selection of candidate samples with a displaced sec-
ondary vertex having three or two tracks corresponding to the decay products of charm mesons.
Clear signals of D± mesons are observed through the reconstruction of the decay mode D± →
K∓π±π± in events with three-track secondary vertices and from D0 production in the decay
chain D∗±(2010) → D0π± with the subsequent decay D0 → K∓π± in events with two-track
secondary vertices. In addition, efficient muon identification among the particles constituting
the jet leads to an independent W + c sample with an identified muon from the semileptonic
decay of the charm quark.

The analysis exploits the intrinsic charge correlation in W + c production between the charge
of the W boson and the charge of the c quark, which are always of opposite sign. The W-boson
decay into a well-identified charged lepton and the final-state mesons allow us to determine
unequivocally the signs of both the W boson and the charm-quark jet candidates. Indepen-
dent opposite-sign and same-sign samples of events are hence defined. The background con-
tributions from processes that are charge symmetric are subtracted in an essentially model-
independent way through a same-sign sample subtraction from the opposite-sign sample in
the relevant variables used in the analysis.

The high purity of the resulting samples allows us to perform various measurements in an
almost background-free environment. The sample of candidate events from the semileptonic
decay of charm mesons is affected by a larger background, mainly in the W→ µν channel, but
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Figure 13: Comparison of the theoretical predictions for σ(W+ + c)/σ(W−+ c) computed with
MCFM and several PDF sets with the average of the experimental measurements. The top plot
compares the average of the measurements made in the muon channel for a pT threshold of
the lepton from the W-boson decay of p`T > 25 GeV. The bottom plot presents the average of
the measurements in the muon and electron channel with the predictions for p`T > 35 GeV. The
uncertainty associated with scale variations is ±1%.
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Figure 14: Cross section ratio, σ(W+ + c)/σ(W− + c), as a function of the absolute value of the
pseudorapidity of the lepton from the W-boson decay. Results for the p`T > 25 GeV case are
shown in the left plot (muon channel only). In the right plot, the transverse momentum of the
lepton is larger than 35 GeV. The data points are the average of the results from the inclusive
three- and two-prong and semileptonic samples. In the right plot the results obtained with
the W → µν samples and W → eν samples are combined. Theoretical predictions at NLO
computed with MCFM and four different PDF sets are also shown. The uncertainty associated
with scale variations are of the order of 1–2%. Symbols showing the theoretical expectations
are slightly displaced in the horizontal axis for better visibility of the predictions.
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it provides a larger statistical power so that the final precision attained in the measurements in
the three charm meson final states is similar. Furthermore, the large number of events in the
inclusive three- and two-prong samples and in the semileptonic sample permit us to perform
differential measurements.

A detailed analysis of W + c production at
√

s = 7 TeV is presented. The study is done for
the kinematic region pjet

T > 25 GeV, |ηjet| < 2.5, in the lepton pseudorapidity range |η`| < 2.1,
and for two different thresholds for the transverse momentum of the lepton from the W-boson
decay: p`T > 25 GeV in the W-boson muon decay channel only, and p`T > 35 GeV in both the
muon and the electron W-boson decay channels. Results obtained in the three charm decay
samples and in the two W-boson decay modes are fully consistent and are thus combined to
increase the final precision of the measurements.

The total W + c production cross sections are measured to be

σ(pp→W + c + X)×B(W→ µν)(pµ
T > 25 GeV) = 107.7± 3.3 (stat.)± 6.9 (syst.) pb,

σ(pp→W + c + X)×B(W→ `ν)(p`T > 35 GeV) = 84.1± 2.0 (stat.)± 4.9 (syst.) pb.

Cross section ratios of the associated production of a positively charged W boson with a c̄
antiquark and a negatively charged W boson with a c quark are obtained:

σ(pp→W+ + c + X)
σ(pp→W− + c + X)

(pµ
T > 25 GeV) = 0.954± 0.025 (stat.)± 0.004 (syst.),

σ(pp→W+ + c + X)
σ(pp→W− + c + X)

(p`T > 35 GeV) = 0.938± 0.019 (stat.)± 0.006 (syst.).

The measured cross section ratios are the first evidence for an asymmetry in the W+ + c and
W−+ c production. Total cross sections and cross section ratios are also measured as a function
of the absolute value of the pseudorapidity of the lepton from the W-boson decay, thus probing
a wide range of Bjorken x of the parton distribution of the proton. These measurements provide
the first direct constraint from LHC data on the strange quark and antiquark content of the
proton and constitute a valuable input for future global PDF analyses.

These measurements are compared with theoretical predictions calculated with MCFM at next-
to-leading order in perturbative QCD using various sets of parton distribution functions. The
PDF groups make different assumptions in their global fits about the total strange-quark con-
tent of the proton and of the s–s asymmetry. An overall agreement between the experimental
results and the theoretical predictions is observed, which validates the fitted strange quark and
antiquark parton distribution functions at an energy significantly higher than those of previous
experiments. In particular, the predicted total cross sections based on those PDF sets that in-
clude low-energy DIS data in their fits agree with the measurements. Theoretical calculations
also predict differential cross section shapes in agreement with the measured ones. The ob-
served W− + c yield is slightly larger than the W+ + c yield, as expected from the dominance
of the d quark over the d antiquark in the proton.
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A Normalized differential cross section and cross section ratios
as a function of the lepton pseudorapidity

Table 11: Estimated number of OS− SS events in the inclusive three-prong sample (defined
in Section 5.4). The estimated numbers of remaining background events after SS subtraction
is given in the third column. The normalized differential cross section as a function of the
absolute value of the lepton pseudorapidity is shown in the last column. The first two blocks
of the table present the results from the W → µν sample, with pµ

T > 25 GeV and pµ
T > 35 GeV.

The results from the W → eν sample, with pe
T > 35 GeV are given in the lowest block of the

table. The first error in the normalized differential cross section is due to the statistical size of
the data sample and the second one is the systematic uncertainty from to the sources discussed
in Section 7.1.

W→ µν, pµ
T > 25 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 1697± 83 86± 49 0.64± 0.03± 0.02
[0.35, 0.7] 1596± 86 63± 46 0.57± 0.03± 0.02
[0.7, 1.1] 1558± 83 113± 52 0.52± 0.03± 0.02
[1.1, 1.6] 1495± 85 142± 56 0.40± 0.02± 0.02
[1.6, 2.1] 1133± 72 72± 43 0.34± 0.02± 0.01

W→ µν, pµ
T > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 1390± 75 37± 37 0.65± 0.03± 0.02
[0.35, 0.7] 1323± 76 40± 37 0.58± 0.03± 0.02
[0.7, 1.1] 1252± 74 87± 45 0.51± 0.03± 0.02
[1.1, 1.6] 1224± 75 90± 45 0.40± 0.02± 0.02
[1.6, 2.1] 899± 63 16± 30 0.34± 0.02± 0.02

W→ eν, pe
T > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 950± 65 219± 44 0.56± 0.05± 0.03
[0.35, 0.7] 955± 64 182± 44 0.60± 0.05± 0.03
[0.7, 1.1] 940± 64 178± 44 0.51± 0.04± 0.03
[1.1, 1.6] 741± 55 97± 38 0.50± 0.04± 0.03
[1.6, 2.1] 437± 50 100± 33 0.28± 0.04± 0.03
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Table 12: Estimated number of OS − SS events in the inclusive two-prong sample (defined
in Section 5.4). The estimated numbers of remaining background events after SS subtraction
is given in the third column. The normalized differential cross section as a function of the
absolute value of the lepton pseudorapidity is shown in the last column. The first two blocks
of the table present the results from the W → µν sample, with pµ

T > 25 GeV and pµ
T > 35 GeV.

The results from the W → eν sample, with pe
T > 35 GeV are given in the lowest block of the

table. The first error in the normalized differential cross section is due to the statistical size of
the data sample and the second one is the systematic uncertainty from to the sources discussed
in Section 7.1.

W→ µν, pµ
T > 25 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 1815± 96 210± 65 0.68± 0.04± 0.03
[0.35, 0.7] 1609± 98 303± 67 0.52± 0.04± 0.03
[0.7, 1.1] 1657± 98 325± 67 0.51± 0.03± 0.02
[1.1, 1.6] 1675± 103 265± 71 0.44± 0.03± 0.02
[1.6, 2.1] 1097± 91 159± 63 0.32± 0.03± 0.02

W→ µν, pµ
T > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 1517± 86 170± 56 0.66± 0.04± 0.03
[0.35, 0.7] 1364± 87 200± 58 0.54± 0.04± 0.03
[0.7, 1.1] 1407± 86 256± 58 0.51± 0.03± 0.02
[1.1, 1.6] 1381± 90 218± 61 0.42± 0.03± 0.02
[1.6, 2.1] 919± 79 94± 50 0.33± 0.03± 0.02

W→ eν, pe
T > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 931± 61 153± 42 0.59± 0.04± 0.03
[0.35, 0.7] 944± 62 200± 42 0.58± 0.04± 0.03
[0.7, 1.1] 1031± 63 128± 43 0.59± 0.04± 0.03
[1.1, 1.6] 655± 55 155± 38 0.39± 0.04± 0.03
[1.6, 2.1] 476± 52 83± 35 0.32± 0.04± 0.03
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Table 13: Estimated number of OS − SS events in the semileptonic sample (defined in Sec-
tion 5.3). The estimated numbers of remaining background events after SS subtraction is given
in the third column. The normalized differential cross section as a function of the absolute
value of the lepton pseudorapidity is shown in the last column. The first two blocks of the
table present the results from the W → µν sample, with pµ

T > 25 GeV and pµ
T > 35 GeV. The

results from the W → eν sample, with pe
T > 35 GeV are given in the lowest block of the table.

The first error in the normalized differential cross section is due to the statistical size of the
data sample and the second one is the systematic uncertainty from to the sources discussed in
Section 7.1.

W→ µν, pµ
T > 25 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 3059± 88 941± 66 0.62± 0.02± 0.02
[0.35, 0.7] 3068± 89 1008± 69 0.57± 0.02± 0.02
[0.7, 1.1] 2976± 89 902± 68 0.54± 0.02± 0.02
[1.1, 1.6] 3004± 93 1040± 72 0.42± 0.02± 0.01
[1.6, 2.1] 2071± 79 687± 63 0.32± 0.02± 0.01

W→ µν, pµ
T > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 2435± 77 751± 59 0.62± 0.03± 0.02
[0.35, 0.7] 2483± 79 823± 61 0.57± 0.02± 0.02
[0.7, 1.1] 2425± 79 713± 59 0.56± 0.02± 0.02
[1.1, 1.6] 2444± 81 891± 62 0.41± 0.02± 0.01
[1.6, 2.1] 1673± 68 578± 54 0.31± 0.02± 0.01

W→ eν, pe
T > 35 GeV

[|η|min, |η|max] Nsel Nbkg
1

σ(W+c)
dσ(W+c)

d|η|
[0, 0.35] 1607± 64 213± 43 0.62± 0.03± 0.02
[0.35, 0.7] 1574± 64 163± 43 0.62± 0.03± 0.02
[0.7, 1.1] 1633± 66 208± 46 0.55± 0.02± 0.02
[1.1, 1.6] 1078± 58 198± 39 0.38± 0.02± 0.01
[1.6, 2.1] 815± 54 103± 35 0.31± 0.02± 0.01
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Table 14: Cross section ratios σ(W+ + c)/σ(W− + c) as a function of the absolute value of the
lepton pseudorapidity from the W-boson decay for the three samples: inclusive three-prong
and two-prong and semileptonic. The first two blocks of the table present the results from the
W → µν sample, with pµ

T > 25 GeV and pµ
T > 35 GeV. The results from the W → eν sample,

with pe
T > 35 GeV are given in the lowest block of the table. The last row of each block gives

the cross section ratio for the full lepton pseudorapidity range [0., 2.1]. The first error is due to
the statistical size of the data sample and the second one is the systematic uncertainty due to
the sources discussed in Section 8.

W→ µν, pµ
T > 25 GeV

[|η|min, |η|max] Three-prong sample Two-prong sample Semileptonic sample
[0, 0.35] 0.877± 0.087± 0.004 1.213± 0.129± 0.005 1.047± 0.076± 0.010
[0.35, 0.7] 0.973± 0.104± 0.005 0.882± 0.109± 0.005 0.990± 0.075± 0.009
[0.7, 1.1] 0.837± 0.091± 0.006 1.023± 0.121± 0.007 0.890± 0.071± 0.015
[1.1, 1.6] 0.999± 0.114± 0.007 1.043± 0.127± 0.007 1.114± 0.089± 0.030
[1.6, 2.1] 0.898± 0.115± 0.010 0.784± 0.134± 0.012 0.709± 0.078± 0.028
[0, 2.1] 0.915± 0.045± 0.003 0.999± 0.055± 0.004 0.959± 0.035± 0.009

W→ µν, pµ
T > 35 GeV

[|η|min, |η|max] Three-prong sample Two-prong sample Semileptonic sample
[0, 0.35] 0.844± 0.092± 0.005 1.202± 0.137± 0.009 0.991± 0.080± 0.009
[0.35, 0.7] 0.912± 0.106± 0.006 0.988± 0.126± 0.007 1.044± 0.085± 0.011
[0.7, 1.1] 0.801± 0.096± 0.006 1.039± 0.127± 0.008 0.933± 0.080± 0.016
[1.1, 1.6] 0.946± 0.117± 0.007 1.028± 0.133± 0.008 1.030± 0.088± 0.028
[1.6, 2.1] 0.873± 0.124± 0.010 0.791± 0.140± 0.013 0.779± 0.089± 0.031
[0, 2.1] 0.873± 0.047± 0.003 1.021± 0.059± 0.004 0.965± 0.038± 0.009

W→ eν, pe
T > 35 GeV

[|η|min, |η|max] Three-prong sample Two-prong sample Semileptonic sample
[0, 0.35] 1.097± 0.148± 0.016 0.924± 0.123± 0.012 1.042± 0.083± 0.014
[0.35, 0.7] 0.990± 0.133± 0.014 1.070± 0.141± 0.015 0.832± 0.068± 0.011
[0.7, 1.1] 0.996± 0.136± 0.014 1.054± 0.130± 0.014 0.899± 0.074± 0.013
[1.1, 1.6] 0.920± 0.137± 0.013 0.871± 0.148± 0.012 0.865± 0.095± 0.014
[1.6, 2.1] 0.619± 0.154± 0.009 0.581± 0.142± 0.008 0.964± 0.127± 0.016
[0, 2.1] 0.953± 0.063± 0.013 0.929± 0.061± 0.012 0.917± 0.038± 0.012
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C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm,
M. Feindt, M. Guthoff2, F. Hartmann2, T. Hauth2, H. Held, K.H. Hoffmann, U. Husemann,
I. Katkov5, J.R. Komaragiri, A. Kornmayer2, P. Lobelle Pardo, D. Martschei, Th. Müller,
M. Niegel, A. Nürnberg, O. Oberst, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F.-
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51: Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
52: Also at School of Physics and Astronomy, University of Southampton, Southampton,
United Kingdom
53: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
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